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Fractional Spin Through Quantum Affine Algebras
With Vanishing Central Charge

M. Mansour1,2 and E. H. Zakkari1

Received

We study the fractional decomposition of the quantum enveloping affine algebras
UQ ( Â(n)) and UQ (Ĉ(n)) with vanishing central charge in the limit Q → q = e

2iπ
k . This

decomposition is based on the bosonic representation and can be related to fractional
supersymmetry and k-fermionic spin. The quantum affine algebras and the classical
ones are equivalent in the fermionic realization.

KEY WORDS: quantum affine algebras; UQ ( Â(n)) and UQ (Ĉ(n)); bosonic and
fermionic representations; splitting.

1. INTRODUCTION

The concept of quantum group and algebras (Drinfeld, 1986; Jimbo, 1986),
have enriched the arena of mathematics and theoretical physics. Quantum groups
appeared in studying Yang–Baxter equations (Kulish and Sklyanin, 1981) as well
as scattering method (Fadeev, 1982). In Floreanini et al. (1990, 1991) the quantum
analogue of Lie superalgebras was constructed. The quantized enveloping alge-
bras associated to affine algebras and superalgebras are given in Drinfeld (1986)
and Yamane (1994). It is well known that the boson realization is a very pow-
erful and elegant method for studying quantum algebras representations. Based
on this method, the representation theory of quantum affine algebras has been an
object of intensive studies, namely, the results for the oscillator representations of
affine algebras. These are obtained (Feingold and Frenkel, 1985; Frappat et al.,
1996, 1997a) through consistent realization involving deformed Bose and Fermi
operators (Biedenharn, 1998; Macfarlane, 1998).

To make a connection with the quantum group theory, a new geometric inter-
pretation of fractional supersymmetry has been introduced Azcarraga et al., 1996;
Dunne, 1996a,b,c, 1999. In these papers, the authors show that the one-dimensional
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superspace is isomorphic to the braided line when the deformation parameter goes
to a root of unity. The similar techniques are used to show how internal spin arises
naturally in a certain limit of the Q-deformed momentum algebras UQ(sl(2))
(Dunne, 1997).

Indeed, using Q-Schwinger realization, it is proved that the decomposition
of the UQ(sl(2)) into a direct product U (sl(2)) and the deformed Uq (sl(2)) (note
that UQ(sl(2)) = Uq (sl(2)) at Q = q ). The property of splitting quantum algebras
An , Bn , Cn , and Dn and quantum superalgebras C(n), B(n, m), C(n + 1), and
D(n, m) in the limit Q → q is investigated in (Mansour et al., 1999a).

We also notice that the case of deformed Virasoro algebras and some other
particular quantum (Super) algebras is given in (Mansour et al., 1999b).

The aim of this paper was to investigate the decomposition property of the
quantum affine algebras with vanishing central charge UQ( Â(n)) and UQ(Ĉ(n))
in the limit Q → q . We start by defining k-algebra in Section 2. In Section 3, we
discuss the decomposition property of Q-boson oscillator in the limit Q → q. We
introduce the way in which one obtains two independent objects, an ordinary boson
and a k-fermion from a Q-deformed boson when Q goes to the root of unity q. We
also establish the equivalence between a Q-deformed fermion and conventional
(ordinary) one. Using these results, we analyze the limit Q → q of the quantum
affine algebras with vanishing central charge UQ( Â(n)) (Section 4) and UQ(Ĉ(n))
(Section 5). Concluding remarks are given in Section 6.

2. PRELIMINARIES ABOUT k-FERMIONIC ALGEBRA

The q-deformed bosonic algebra �q generated by A+, A−, and number
operator N is given by

A− A+ − q A+ A− = q−N (1)

A− A+ − q−1 A+ A− = q N (2)

q N A±q−N = q±1 A± (3)

q N q−N = q−N q N = 1, (4)

where the deformation parameter

q = e
2iπ

l , l ∈ N − {0, 1}, (5)

is a root of unity.
The annihilation operator A− is hermitian conjugate to creation operator A+

and N is hermitian also. From Eqs. (1)–(4), it is easy to have the following relations:

A−(A+)n = [[n]]q−N (A+)n−1 + qn(A+)n A− (6)

(A−)n A+ = [[n]](A−)n−1q−N + qn A+(A−)n , (7)
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where the notation [[ ]] is defined by

[[n]] = 1 − q2n

1 − q2
(8)

We introduce a new variable k defined by

k = l for odd values of l, (9)

k = l

2
for even values of l, (10)

such that for odd l (resp. even l ), we have qk = 1 (resp. qk = −1). In the particular
case n = k, Eqs. (6)–(7) permit us to have

A−(A+)k = ±(A+)k A− (11)

(A−)k A+ = ±A+(A−)k , (12)

and the Eqs. (1)–(5) yield to

q N (A+)k = (A+)kq N (13)

q N (A−)k = (A−)kq N (14)

One can show that the elements (A−)k and (A+)k are the elements of the cen-
tre of

∑
q algebra (odd values for l); and the irreducible representations are k-

dimensional. These two properties lead to

(A+)k = α I (15)

(A−)k = β I. (16)

The extra possibilities parameterized by

(1) α = 0, β �= 0

(2) α �= 0, β = 0

(3) α �= 0, β �= 0,

are not relevant for the considerations of this paper. In the two cases (1) and (2)
we have the so-called semiperiodic (semicyclic) representation and the case (3)
correspond to the periodic one. In what follows, we are interested in a representation
of the algebra

∑
q such that the following

(A∓)k = 0

is satisfied. We note that the algebra
∑

−1 obtained for k = 2, correspond to ordi-
nary fermion operators with (A+)2 = 0 and (A−)2 = 0 which reflects the exclu-
sion’s Pauli principle. In the limit case where k → ∞, the algebra

∑
1 correspond

to the ordinary bosons. For other values of k, the k-fermions operators interpolate
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between fermions and bosons, these are also called anyons with fractional spin in
the sense of Majid (1992, 1994).

3. FRACTIONAL SPIN THROUGH Q-BOSON

In the previous section, we have worked with q at root of unity. In this case,
quantum oscillator (k-fermionic) algebra exhibit a rich representation with very
special properties different from the case where q is generic. So, in the first case the
Hilbert space is finite dimensional. In contrast, where q is generic, the Fock space
is infinite dimensional. In order to investigate the decomposition of Q-deformed
boson in the limit Q → e 2iπ

k we start by recalling the Q-deformed algebra �Q .
The algebra �Q generated by an annihilation operator B−, a creation operator

B+, and a number operator NB :

B− B+ − Q B+ B− = Q−NB (17)

B− B+ − Q−1 B+ B− = QNB (18)

QNB B+ Q−NB = Q B+ (19)

QNB B− Q−NB = Q−1 B− (20)

QNB Q−NB = Q−NB Q
+ NB = 1. (21)

From the above equations, we obtain

[Q−NB B−, [Q−NB B−, [· · ·[Q−NB B−, (B+)k]Q2k · · ·]Q4 ]Q2 ] = Q
k(k−1)

2 [k]! (22)

where the Q-deformed factorial is given by

[k]! = [k][k − 1][k − 2]· · ·[1], (23)

and

[0]! = 1

[k] = Qk − Q−k

Q − Q−1
.

The Q-commutator, in Eq. (22), of two operators A and B is defined by

[A, B]Q = AB − Q B A

The aim of this section is to determine the limit of �Q algebra when Q goes
to the root of unity q . The starting point is the limit Q → q of the eq. (22),

lim
Q→q

1

k
Q−NB [Q−NB B−, [Q−NB B−, [· · ·[Q−NB B−, (B+)k]Q2k · · ·]Q4 ]Q2 ]

= lim
Q→q

Q
k(k−1)

2

[k]!
[Q−NB (B−)k , (B+)k] = q

k(k−1)
2 (24)
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This equation can be reduced to

lim
Q→q

[
Q

k NB
2 (B−)k

([k]!)
1
2

,
(B+)k Q

k NB
2

([k]!)
1
2

]
= 1. (25)

Since q is a root of unity, it is possible to change the sign on the exponent of
q

k NB
2 terms in the above equation.

We define the operators as in Dunne (1997):

b− = lim
Q→q

Q± k NB
2

([k]!)
1
2

(B−)k , b+ = lim
Q→q

(B+)k Q
± k NB

2

([k]!)
1
2

, (26)

which lead to an ordinary boson algebra noted �0, generated by

[b−, b+] = 1. (27)

The number operator of this new bosonic algebra defined as the usual case,
Nb = b+b−. At this stage we are in a position to discuss the splitting of Q-deformed
boson in the limit Q → q . Let us introduce the new set of generators given by

A− = B−q− k Nb
2 (28)

A+ = B+q− k Nb
2 (29)

NA = NB − k Nb, (30)

which define a k-fermionic algebra:

[A+, A−]q−1 = q NA (31)

[A−, A+]q = q−NA (32)

[NA, A±] = ±A±. (33)

It is easy to verify that the two algebras generated by the set of operators {b+, b−,
Nb} and {A+, A−, NA} are mutually commutative. We conclude that in the limit
Q → q, the Q-deformed bosonic algebra oscillator decomposes into two inde-
pendent oscillators, an ordinary boson and k-fermion; formally one can write:

lim
Q→q

�Q ≡ �0 ⊗ �q ,

where �0 is the classical bosonic algebra generated by the operators {b+, b−, Nb}.
Similarly, we want to study the Q-fermion algebra at root of unity. To do this,

we start by considering the Q-deformed fermionic algebra, noted �Q :

F−F+ + QF+F− = QNF (34)

F−F+ + Q−1 F+F− = Q−NF (35)

QNF F+ Q−NF = QF+ (36)
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QNF F− Q−NF = Q−1 F− (37)

QNF Q−NF = Q−NF QNF = 1 (38)

(F+)2 = 0, (F−)2 = 0. (39)

We define the new fermionic operators as follow:

f + = lim
Q→q

F+ Q
− NF

2 (40)

f − = lim
Q→q

Q
− NF

2 F−. (41)

By a direct calculus, we obtain the following anticommutation relation:

{ f −, f +} = 1. (42)

Moreover, we have the nilpotency condition:

( f −)2 = 0, ( f +)2 = 0. (43)

Thus, we see that the Q-deformed fermion reproduce the conventional (ordi-
nary) fermion. The same convention notation permits us to write

lim
Q→q

�Q ≡ �−1

4. QUANTUM AFFINE ALGEBRA UQ(Â(N)) AT Q A ROOT OF UNITY

We apply the above results to derive the property of decomposition of quan-
tum affine algebra with vanishing central charge UQ( Â(n)) in the limitQ → q.
Recalling that the UQ( Â(n)) algebra is generated by the set of generators {ei , fi ,
hi , 0 ≤ i 〈 n} satisfying the following relations:

[ei , f j ] = δi j
Qhi

i − Q−hi
i

Qi − Q−1
i

(44)

[hi , e j ] = ai j e j ; [ fi , h j ] = ai j f j (45)

[hi , h j ] = [ei , e j ] = [ fi , f j ] = 0. (46)

The quantum affine algebra with vanishing central charge UQ( Ân) admits
two Q-oscillators representations: bosonic and fermionic ones; in the bosonic
realization, the generators of UQ( Ân) can be constructed by introducing (n + 1)
Q-deformed bosons as follows:

ei = B−
i B+

i+1, 1 ≤ i ≤ n

fi = B+
i B−

i+1, 1 ≤ i ≤ n
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hi = −Ni + Ni+1, 1 ≤ i ≤ n

e0 = B−
n+1 B+

1

f0 = B−
1 B+

n+1

h0 = N1 − Nn+1.

The fermionic realization of UQ( Â(n)) is given by

ei = F+
i F−

i+1, 1 ≤ i ≤ n

fi = F−
i F+

i+1, 1 ≤ i ≤ n

hi = Ni − Ni+1, 1 ≤ i ≤ n

e0 = F+
n+1 F−

1

f0 = F+
1 F−

n+1

h0 = −N1 + Nn+1.

At this stage, our aim was to investigate the limit Q → q of the affine algebra
with vanishing central charge UQ( Ân). As it is already mentioned in the Intro-
duction section, our analysis is based on the Q -oscillator representation based on
Q-Schwinger realization. In the limit Q → q , the splitting of Q-deformed bosons
leads to classical bosons {b+

i , b−
i , Nbi , 1 ≤ i ≤ n} given by the Eqs. (26)–(27) and

k-fermionic algebra {A+
i , A−

i , NAi , 1 ≤ i ≤ n} given by Eqs. (31)–(33). From the
classical bosons, we define for i = 1, . . . , n the operators:

ei = b−
i b+

i+1 (47)

fi = b+
i b−

i+1 (48)

hi = −Nbi + Nbi+1 (49)

e0 = b−
1 b+

n+1 (50)

f0 = b+
1 b−

n+1 (51)

h0 = −Nb1 + Nbn+1 , (52)

the set {ei , fi , hi , 0 ≤ i ≤ n} generate the classical algebra U ( Â(n)). From the
remaining generators {A+

i , A−
i , NAi , 1 ≤ i ≤ n + 1}, we can realize Uq ( Â(n)),

generated by Ei , Fi , Hi , E0, F0, and H0 where

Ei = A−
i A+

i+1, 1 ≤ i ≤ n (53)

Fi = A+
i A−

i+1, 1 ≤ i ≤ n (54)

Hi = −NAi + NAn+1 , 1 ≤ i ≤ n (55)

E0 = A+
1 A−

n+1 (56)
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F0 = A−
1 A+

n+1 (57)

H0 = NA1 − NAn+1 . (58)

The algebra Uq ( Â(n)) is the same version of UQ( Ân) obtained by simply taking
Q = q and Bi ∼ Ai . Because of the commutativity of elements of Uq ( Â(n)) and
U ( Ân), we obtain the following decomposition of the quantum affine algebra
UQ( Ân) in the bosonic realization

lim
Q→q

UQ( Ân) ≡ Uq ( Â(n)) ⊗ U ( Â(n)).

We discuss now the equivalence between UQ( Ân) and U ( Â(n)) algebras in the
fermionic realization. Indeed, we have discussed in Section 2, how one can iden-
tify the conventional fermions with Q-deformed fermions. Consequently, due to
this equivalence, it is possible to construct Q-deformed affine algebras UQ( Ân)
using ordinary fermions. It is also possible to construct the affine algebra U ( Ân)
by considering Q-deformed fermions. So, in the fermionic realization we have
equivalence between U ( Ân) and UQ( Ân). To be more clear, we consider the
UQ( Ân) in the Q-fermionic representation. Where the generators are given
by

ei = F−
i F+

i+1, 1 ≤ i ≤ n (59)

fi = F+
i F−

i+1, 1 ≤ i ≤ n (60)

hi = NFi − NFi+1 , 1 ≤ i ≤ n (61)

e0 = F+
n+1 F−

1 (62)

f0 = F+
1 F−

n+1 (63)

h0 = −NF1 + NFn+1 . (64)

Because of the equivalence fermion Q-fermion, the operators f −
i , f +

i are
defined as a constant multiple of conventional fermion operators:

f +
i = F+

i Q
−NFi

2 (65)

f −
i = Q

−NFi
2 F−

i , (66)

from which we can realize the generators:

Ei = f −
i f +

i+1, 1 ≤ i ≤ n (67)

Fi = f +
i f −

i+1, 1 ≤ i ≤ n (68)

Hi = N fi − N fi+1 , 1 ≤ i ≤ n (69)

E0 = f +
n+1 f −

1 (70)
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F0 = f +
1 f −

n+1 (71)

H0 = −N f1 + N fn+1 . (72)

The set {Ei , Fi , Hi ; 0 ≤ i ≤ n} generate the classical affine algebra U ( Ân)
in the fermionic representation and we have

Uq ( Â(n)) ≡ U ( Â(n)).

5. QUANTUM AFFINE ALGEBRA UQ(Ĉ(N)) AT A ROOT OF UNITY

Let Q ∈ C − {0} be the deformation parameter. The quantum affine alge-
bra UQ(Ĉ(n)) is described in the Serre–Chevalley basis in terms of the simple
root ei , fi , and Cartan generators hi , where i = 0, . . . , n, satisfy the following
commutation relations:

[ei , f j ] = δi j
Qhi − Q−hi

Qi − Q−1
i

(73)

[ei , e j ] = [ fi , f j ] = [hi , h j ] = 0 (74)

[hi , e j ] = ai j e j , [hi , f j ] = −ai j f j . (75)

An explicit realization of the quantum affine symplectic algebra UQ(Ĉ (n))
has been given by L. Frappat et al. (1997b). In the particular case of the quantum
affine symplectic algebra with vanishing central charge UQ(Ĉ (n)); the generators
can be realized in the bosonic case by

ei = B+
i B−

i+1 + B+
2n−i B−

2n−i+1, 1 ≤ i ≤ n − 1 (76)

fi = B−
i B+

i+1 + B−
2n−i B+

2n−i+1, 1 ≤ i ≤ n − 1 (77)

hi = NBi − NBi+1 + NB2n−i − NB2n−i+1 , 1 ≤ i ≤ n − 1 (78)

en = B−
n+1 B+

n (79)

fn = B+
n+1 B−

n (80)

hn = NBn − NBn+1 (81)

e0 = B+
2n B−

1 (82)

f0 = B+
1 B−

2n (83)

h0 = NB2n − NB1 . (84)

Because of the property of Q-boson decomposition in the Q → q limit, each
Q-boson {B−

i , B+
i , NBi } reproduce an ordinary bosonic algebra {b−

i , b+
i , Nbi } and

k-fermion operators
{

A−
i , A+

i , NAi

}
.
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From the set
{
b+

i , b−
i , Nbi , i = 0, . . . , n

}
we can construct the classical

affine algebra U (Ĉ(n)) as follows:

Ei = b+
i b−

i+1 + b+
2n−i b

−
2n−i+1, 1 ≤ i ≤ n − 1 (85)

Fi = b−
i b+

i+1 + b−
2n−i b

+
2n−i+1, 1 ≤ i ≤ n − 1 (86)

Hi = Nbi − Nbi+1 + Nb2n−i − Nb2n−i+1 , 1 ≤ i ≤ n − 1 (87)

En = b−
n+1b+

n (88)

Fn = b+
n+1b−

n (89)

Hn = Nbn − Nbn+1 (90)

E0 = b+
2nb−

1 (91)

F0 = b+
1 b−

2n (92)

H0 = Nb2n − Nb1 . (93)

From the k-fermionic operators {A−
i , A+

i , NAi , 1 ≤ i ≤ n + 1}, one can con-
struct as in Eqs. (76)–(84) the q -deformed affine algebra Uq (Ĉ(n)). It is easy to
verify that Uq (Ĉ(n)) and U (Ĉ(n)) are mutually commutative. As a result, we
have the following decomposition of quantum algebra UQ(Ĉ(n)) in the limit
Q → q:

lim
Q→q

UQ(Ĉ(n)) ≡ U (Ĉ(n)) ⊗ Uq (Ĉ(n)).

The equivalence between UQ(Ĉ(n)) and U (Ĉ(n)) algebras in the fermionic rep-
resentation can be easily deduced; in fact we can construct the affine deformed
algebra UQ(Ĉ(n)) using the ordinary fermions and conversely, the classical affine
algebra U (Ĉ(n)) can be realized in terms of deformed fermions. Indeed, we con-
sider the UQ(Ĉ(n)) in the Q-fermionic representation, where the generators are
given by

Ei = F+
i F−

i+1 + F+
2n−i F−

2n−i+1, 1 ≤ i ≤ n − 1 (94)

Fi = F−
i F+

i+1 + F−
2n−i F+

2n−i+1, 1 ≤ i ≤ n − 1 (95)

Hi = NBi+1 − NBi + NB2n−i+1
− NB2n−i

, 1 ≤ i ≤ n − 1 (96)

En = F−
n+1 F+

n (97)

Fn = F+
n+1 F−

n (98)

Hn = NBn+1 − NBn
(99)

E0 = F+
2n F−

1 (100)

F0 = F+
1 F−

2n (101)
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H0 = N1 − NB2n
. (102)

As in the case of UQ( Ân), the Q-deformed fermions can be identified to
classical ones.

So, we can deduced that in the fermionic representation the Q-deformed
algebra UQ(Ĉ(n)) is equivalent to the classical affine algebra U (Ĉ(n)) and one can
write:

lim
Q→q

UQ(Ĉ(n)) ≡ U (Ĉ(n)).

6. CONCLUSION

In this paper we have worked with q at root of unity. In this case, quan-
tum oscillator (k-fermionic) algebra exhibit a rich representation with very special
properties different from the case where q is generic.We have presented the gen-
eral method leading to the investigation of the limit Q → q = e

2iπ
k of the quantum

affine algebras with vanishing central charge UQ( Ân) and UQ(Ĉ(n)). We note
that the Q-oscillator representation is crucial in this manner of splitting in this pa-
per. The technics and formulae used in this paper, will be useful to extend this study
to the infinite deformed algebras (Mansour and Zakkari, unpublished manuscript),
and quantum affine superalgebras (Mansour, in prepration).
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